00 O d -2 O - IR > +_1 SLBP o 8
N o I T B S g
oSN N beny Teeerel/ MRE F I
i AL > > ¥ bo ° "Bal
Solw L B3 ARk \owny fititetesod
E.:O .: :"_Y' ;.4 “é o’o“’l ‘II.I.. °, :T:T:)':
::O,._; fl"'{o] /‘— <N I.... = :OJ
oDl [HAOF &y Tl lEda @i
HoEcs ! PHETY o G welkd i
b e ‘[< "\‘. .; ('.VI:ﬁY(sCH ‘0.‘..0*0#' T oc 4
AT Sl Vi N R

OCLLES UPHOIF

MINI-EXPLOR
A FORTRAN-Coded Version of the
EXPLOR Language for Minicomputers

by

Ken Knowlton

Bell Laboratories

Murray Hill, New Jersey 07974

I. INTRODUCTION

The previously reported EXPLOR language generates two-
dimensional patterns, designs and pictures from Explicitly pro-
vided 2-D Patterns, Local Operations and Randomness. It has
proven effective in depicting results of simulations in natural (i.e.,
crystal growth) and hypothetical (e.g., cellular automata)
situations, and for the production of a wide variety of designs. The
language has been particularly valuable as a teaching aid for new
students in computer graphics and computation in general — | have
used it in courses and workshops at the University of California at
Santa Cruz, Eastern Michigan University and Syracuse University;
the “Santa Cruz" version has been exported to 30 other colleges and
universities.

Mini-Explor is an abbreviated but powerful version of the system,
coded in only 430 lines of that portable subset of American
Standard FORTRAN called PFORT. It can run on most mini-
computers having a 16-bit word length (or larger) and 8K to 16K of
core storage and, of course, a FORTRAN compiler. Portability has
been checked by the PFORT Verifier. Unless otherwise modified,
output is by means of WRITE statements which cause up to
3-times-overprinted output on the machine's line printer or teletype
— yielding 4 effective shades of grey scale. The internal image is
retained in raster-scan format and consists of 140 lines of 140 spots
each, packed as seven 2-bit picture cells per machine word. Most
operations involve unpacking and repacking of sections of the total
image; an implementer may find it desirable to recode in machine
language the low level routines which perform these tasks. Other
implementation hints appear in Appendix B.

Il. PROGRAMMER’S DESCRIPTION OF MINI-EXPLOR

From the programmer's point of view, the system consists of
these nine FORTRAN-callable functions and subroutines,
subsequently described in detail:

FUNCTIONS

NUM (x,y)
NE (min,max)

SUBROUTINES

CALL SHOW (x,y,w,h)

CALL PUT (x,y, n)

CALL PUT4 (x,y, n)

CALL PUT16)x,y, n1,n2,n3,nd)

CALL CHANJ (x,y,w,h,% rule)
CALL LOCOP (x,y,w,h,%, many,nabors,these, rule)
CALL COMBN (x,y,w,h,%, xf,yf orientation, ro,r1,r2,r3)

To use these routines effectively, the user needs to learn that part
of FORTRAN dealing with the following:
subroutine calls
GO TQ@'s
integer variables
arithmetic assignment statements; operators + - * /[**
D@ loops
logical IF statements; connectives .AND. .@R. .NQT.
functions, including built-in FORTRAN functions MINO, MAXO,
M@D, IABS, ISIGN
arrays: 1, 2, and 3-dimensional

All parameters used in subroutine calls are integers (i.e., with
values 0,1,2,3,4 . . .); in most cases where it seems meaningful,
their values may be negative. It is thus advisable to make the first
line of every program, if accepted by the local FORTRAN compiler,
the following:

IMPLICIT INTEGER (A-2)
The user imagines the internally-storred picture as a 140x140

array of picture cells, each holding a digit 0,1,2, or 3 and addressed
in terms of their x,y coordinates.

At the beginning of a program, all cells are filled with zeros. In the
following discussion, subroutines dealing with rectangular areas
have in their descriptions the dummy parameters

(x,y,w,h,%, .. .)
which have these meanings:
x is the x-coordinate of the center of the rectangle (or %2 cell left
of center if width is an even number)

y is the y-coordinate of the center of the rectangle (or %2 cell
below the center if height is even)

w is its width
h is its height, and

% is an integer 1 to 100 stating approximately the percentage of
cells actually to be treated, on a psuedorandom basis. (100
means process all of the cells for certain.)

FUNCTIONS

NUM (x,y) has a value (0-3) of the number currently stored in cell
x,y; if (x,y) is off of the internally represented surface, the value of
NUM (x,y) is 4.

NE (min,max), pronounced “any,” has, on each usage, a new
randomly-selected value from min thru max; max may be less than
min and either or both may be negative but the difference [max-min]
must be less than 199.

SUBROUTINES

CALL SHOW (x,y,w,h) will cause a printout showing the contents
of the specified rectangle. The specified area will be truncated if it
exceeds the area actually represented in the machine or if it is too
wide for the device used for output. Digits 0, 1, 2, 3 appear as a grey
scale: , ', x, and K, respectively.

CALL PUT (x,y, n) will put at coordinates (x,y) the number n (i.e.,
overwrite the previous contents). If n is larger than 3, the cell
remains unchanged.

CALL PUT4 (x,y, n) where n is a 4-digit number will cause the left-
most digit to be “put” at (x,y), the next to be put at (x+1,y) etc. If
any digit is larger than 3, the corresponding cell is not changed.

CALL PUT16 (x,y, n1,n2,n3,nd) where n1 through n4 are each
4-digit numbers, “puts” or writes the 16 digits into 16 successive
cells (x,y), (x+1,y) etc. Note that a series of calls to PUT16 with
decreasing y values can serve to place an explicit 2-dimensional
pattern onto the internal grid:

CALL PUT16 (50,40,3
CALL PUT16 (50,39,3
CALL PUT16 (50,38,3
CALL PUT16 (50,37,333

CALL CHANJ (x,y,w,h,%, rule) pronounced “change" — causes
the contents of the specified rectangular area to be changed
according to the specified rule: rule is a 4-digit number saying,

rom left to right what the digits 0, 1, 2 and 3 are to be changed into.
Thus the rule 1033 says that 0's become 1's, 1's are to become 0's,
2's become 3's, and 3's remain unchanged (become 3's).

CALL LOCOP (x,y,w,h,%, OK-counts, neighbors, these, rule) is
alocal operation, causing certain of the cells in the specified region
to be changed according to the indicated rule: Those changed are
the ones with acceptable counts of the designated adjacent cells
holding appropriate numbers:

OK-counts indicates up to 4 permissible numbers of neighbors
which, satisfying the test, permit the cell to be changed by the
rule. If zero is a permissible count, it must be last.

neighbors is a 3-digit number specifying a set of neighbors,
made up by summing the corresponding numbers from this
chart:

400 200 100

40 10

4 2 1

these are up to 4 values that individual neighbors must have to
satisfy the test. If zero is one of them, it must be last.

For Example:

CALL LOCOP (x,y,w,h,50, 350,707,120, rule) says “in the area
x,y,w,h, change, according to the given rule, half (50%) of those
cells where 3, 5, or none of the following six neighbors: diagonally
adjacent cells (400 + 100 + 4 + 1) plus cells directly above and below
(+200+2 = 707) contains 1's, 2's, or 0's."”

The routine works in such a way that effects do not propagate
during a single call. For example, a single layer of 3's could be
placed around existing 3's without producing unlimited streamers
of 3's. The routine uniformly does not process cells on the edge of
the represented area, regardless of the neighborhood specified.

CALL COMBN (x,y,w,h,%, xf,yforient, r0,r,r2,r3) read
“combine"” — causes contents of the indicated percentage of
x,y,w,h to be changed by one of four rules, depending on contents
of a corresponding cell in an area centered at (xf,yf). The result is
thus a simple or complicated “combination” of two picture area,
and is imagined to come about as follows: a copy of the neighbor-
hood of the “from" area centered at (xf,yf) is picked up, (re) oriented
according to the value 1-8 or orient:
asis
rotate 90° clockwise
rotate 180°
rotate 90° counterclockwise
flip right-left
flip r-I and rotate 90° clockwise
flip r-1 and rotate 180°
flip r-l and rotate 90° counterclockwise
and repositioned so that the central (xf,yf) cell of the “from" area is
over (x,y) — the center of the area to be changed. Each affected cell
is then processed by one of four translation rules: which rule is
determined cell-by-cell by the contents of the “from area cell”
directly over it. Of the many possible sets of four translation rules,
four examples are here given:

ONOONEWN -

0 1 2 3 &from" area cell contents

P— —— p—— p——

, 0000,1111,2222,3333)
, 0123,1123,2223,3333)
(¢) ..., 0123,1111,2222,3333)

(d) , 0123,1230,2301,3012)

In example (a) if a cell to be processed has a 0 above it (in the
corresponding “from-area” cell) then whetheritbea 0,1, 2or3 it is
changed to a 0; likewise if there is a 1 above it, it becomes a 1
regardless of what it was, etc. - the total effect of rule set (a) is that
it is a copy operation in which, if the associated probability is 100,
a copy of the “from" area replaces the “to" area.

In example (b) the larger of the two cell contents remains after the
operation — e.g., 0's remain only where there were o's in both
“from" and “to" cells, 3's result if either was a 3, etc. In (c) the
“from" area is a pattern copied into x,y,w,h except that 0 is a “don't
copy” number — i.e., where there are 0's in the from area, the
original x,y,w,h contents remain. Example (d) leaves the sum, mod
4, of the two cell contents.

In instances where the “from” cell is off the represented surface,
no action is taken for the corresponding “to" cell. If “from" and “to"
areas overlap, let the programmer beware of undesired effects
resulting from the order in which the subroutine treats the cells!
The order is: leftmost column of affected area first, from bottom to
top.

The six photographs enclosed in this issue of PAGE are
produced by very simple programs and represent a variety of
possible graphic results using MINI-EXPLOR: (1) Game of Life,
Starting with Pi; (2) Contour Plot of Superimposed Octagonal
Pyramids; (3) Contour Plot of a Mathematical Function; (4) Hemis-
phere of Small Cubes) (5) Growth of Nuclei by Randomly Selected
Rules; (6) Randomly Oriented Juxtaposed Modules.

(a)
(b)

ISMUS
lowa State Computerized Music System

Stefan M. Silverston, Computer Science
Terry A. Smay, Electrical Engineering
Gary C. White, Music

lowa State University
Ames, lowa 50010

THE PROJECTED SYSTEM

ISMUS will be a studio for the generation and processing of
sound which incorporated digital and analog equipment. The
system will be flexible and sophisticated enough to be useful for
serious compositional activity as well as demonstration of and
research into the properties of sound.

The system will contain a PDP11-20 computer with 8K or more of
core plus disk storage. Magnetic and paper tape will be available for
permanent storage of software and finished compositions when the
system is completed. Communication with PDP11 will be through a
teletype of CRT terminal, A Buchla Model 218 keyboard, and other
manual controllers. Analog signal generation and processing will
be accomplished by a Buchla series 200 modular electronic music

studio. The PDP11 will communicate with the analog studio
through a switching matrix which allows the computer to control
the interconnection of the analog equipment, and a digital-to-
analog processing system which generates control voltages for the
Buchla studio. The output of the Buchla system may be monitored
using headphones or speakers and recorded on tape.

When completed, the system will allow the composer to control
the sofeware in the computer with an input code, with manual
controllers (keyboards, switches, etc.) or with a combination of
these. The user will be able to move smoothly from one type of con-
trol to another. Interconnection of modules (patching) will be
possible either by hand (patch cords) or by computer control.
Control voltages will be producible by manual controllers and by
computer output. The user will be able to apply combinations of
these control voltages to any input in the studio. Timing of events
will be controlled either manually (performance) or by a clock
resident in the interface. The real power of this system lies in the
flexible combinations of manual and automatic control which per-
mit optimal collaboration between the composer and the system.

ISMUS OPERATION AND USER INTERACTION

ISMUS is, in essence, a system for the control of electronic
sound-generating modules. The primitive element of a composition
is an instruction to control a sound-generating module. The user
communicates with the ISMUS system via a teletype and a Buchla
digital keyboard.

The basic structure in ISMUS is the layer. The layer is a list of
instructions assembled by the ISMUS compiler, each consisting of
adelta time (increment on time), an address and two values. At the
time indicated, the values are sent to the address indicated.

A layer may be assembled from any combination of several
inputs. In performance the output which plays the synthesizer is
the combination of one or more layers. All layers may have been
previously stored. Or, one of the layers may come from real-time
(performance) input. In the case of a real-time input, the operator
has the option of storing this input if he desires.

TELETYPE INPUT

An ISMUS Language has been developed which consists of
commands to control the system. Commands are communicated to
the ISMUS system via teletype. These commands either generate
instructions, later to be transmitted to the synthesizer, or perform
auxiliary tasks.

Examples of commands are: PATCH, which sets up interconnec-
tions among the sound-generating modules; LIST, which provides
listings of stored compositions; DEFINE, which establishes the
musical meaning of the Buchla keyboard; INSERT, which
facilitates editing of compositions; TUNE, which allows the user to
“tune” the synthesizer to obtain the desired sound (and records in
the computer the final configuration reached); SCORE, which
allows for coded input either from the teletype keyboard or from an
external source; and PLAY, which performs a composition on the
synthesizer.

KEYBOARD INPUT

Each time a status change occurs on the keyboard (either depres-
sion or release of a key), a corresponding layer (see above) is
invoked. Which layer is invoked for a particular key depends upon
the keyboard definition set by the user via the DEFINE command
(see above). A standard default keyboard is also available.

Whenever a key is depressed or released, the event is recorded in
the computer. Sequences of keyboard events are thus available for
later playback, editing, and inclusion in layers and compositions.

HARDWARE

A block diagram of the hardware configuration is shown in Figure
1 on the next page.

THE BUCHLA SYNTHESIZER AND KEYBOARD

The system which is presently being developed employs Buchla
series 200 modules and a digital output keyboard recently designed
by Donald Buchla. Modules included in the system are: 206 Dual
Mixer, 218 Keyboard, 258 Dual Oscillator, 265 Source of Uncertain-
ty, 275 Reverberation Unit, 291 Voltage Controlled Filter, 292 Gate,
and 295 Ten Channel Filter. Envelopes, and other time varying
functions will be generated by units in the interface.

THE PDP11-20 AND TELETYPE

The ISMUS system now includes a PDP11-20 with 8K of core
memory, and attached teletype with paper-tape reader and punch.
Memory capacity will have to be expanded if ISMUS is to attain the

i M n! o T A
R Y (O P
e t J%
“ “T' " o 3
0 IS 1 Al '
1 I_I_x) gt

i [| ; ¥ .
"I H ; DA iy
w.fn.'.'.'v..!':-:{f; ﬁts"ﬂ.ﬁff e

.II*P' -.: .l*'
b*b;b*
|.
hl"ll
Rug H 3‘:"5

Y4

. -

full power envisioned for it. Either fixed-head disk or additional
core, or, most probably, both, will be needed soon.

SYSTEM INTERFACES
The block diagram shown in Figure 1 reflects present thinking as
to system configuration. Obviously this configuration will change

as system design progresses and constraints and limitations are
more clearly identified.

ISMUS HARDWARE SYSTEM

Buchla
Teletype Clock Keyboard
|
\
Ty DR11-A DR11-A
Interface Interface Interface
— ——--_.p—————‘r— —————— —————
r i
| __y POP11-20 y 1 . =

UNIBUS >|
[=%

|
| Core |
KA1
: Processor mﬁ"ﬂry) : Disk
| VY ST e e s =
\
Patch
DR11-A Decod Envelope |5 0/A
Interface 2 o =] Generators Convertors S?‘?,"M
\
Hand Buchla |] Audio
Patching Synthesizer System
Figure |

User input to the system is via the Buchla keyboard and a tele-
type unit. The keyboard input at this time is considered to be very
general and is not simply limited to the pitch-timing input normally
associated with a keyboard. The keyboard provides digital signals
to the system as shown.

The PDP-11 computer is the principal unit in the proposed
system. Communication with this system is via its “UNIBUS", as
shown. A real time clock is provided to serve as a system reference.
The clock runs separately from the rest of the system, and provides
a tempo reference.

The PDP-11 delivers to the interface system two basic types of
information units: PATCH UPDATE commands and CONTROL
commands. Patch update comands dictate changes in system
interconnection, permitting dynamic program-controlled reconnec-
tion of the sound-producing modules in the Buchla synthesizer.
Control commands provide numerical values and destinations of
control voltages which drive these modules. As shown in the
figure, control voltage values must be converted to analog form
before being routed to the synthesizer module inputs. Envelopes
and other time varying control voltages will be produced by
envelope-processing units which will receive voltage values and
achievement times from the PDP-11.

The remainder of the system consists of the Buchla synthesizer
and switching units to control interconnection of the modules
which comprise the synthesizer. Audio output from the synthesizer
units drives a speaker system and an audio tape recorder.

An important feature of the proposed system is the ability to
dynamically modify system interconnection under program control.
It must be admitted that this feature is most demanding of design
ingenuity.

SOFTWARE

Figure Il shows current software design.

The command PLAY triggers the Link Processor, which prepares
the layers indicated by the user for performance. The Real-Time
Processor concurrently handles playback of stored layers and
acceptance and recording of keyboard performance.

Eventually, as the ISMUS system is built up and becomes more
complex, additional sophistication will have to be built into the
Link Processor and, especially, the Real-Time Processor. For
example, simultaneous, and perhaps conflicting, demands for the
same resources will have to be fielded smoothly, with disrupting
the musical flow.

ISMUS SOFTWARE SYSTEM

USER
INTERFACE -——
MODULE
Y \
Errors and &?ne' d
mpose Pitch man
Play messages Compo: Processors
v | Y Y Y
Link &her d
Pitch Envelof mman
™} Processor pe Expanders
\ }
Keyboard
;realmme Interrupt
geetr Routine
|
System
Library
1/0 Routines
Math. Rou-
tines Others
Figure Il

MUSYS—software for an electronic music
studio

Software — Practice & Experience, 3, 4 (Oct.-Dec. 1973), 369-383.

In recent years the image of the electronic music composer has
changed from that of the mad tinkerer, with discarded radio and TV
test equipment, to that of a sophisticated user of fourth-generation
mini- (and maxi-) digital computer systems. As the hardware that
found its way into the studio became more complex, miniaturized,
and digitalized, the next step to minicomputer-controlled devices
came quite naturally. And with it cam programming languages
specifically designed for music composition.

Since the late 1950s we have seen digital computers applied to
music composition in a variety of ways. The first was the
generation of conventional scores (in either lexigraphic code or
plotter-drawn graphic renderings) for conventional instruments,
based on compositional rules programmed in an appropriate non-
numerical language. Following work done at Bell Labs, large
computers were later connected to very fast digital-to-analog
converters to produce analog sound in 25,000 12-bit samples per
second using programs that simulated sound-generating devices.

In 1969, with the advent of modular electronic music synthe-
sizers, the place of the minicomputer as an integral part of the
electronic music studio became a reality. Now the actual sound
generation could be left to analog signal-generating devices under
digital control from a program running in real time. However, the
problem of defining a programming language to describe musical
events still remains. Interfacing the composer to this hybrid system
is a serious research problem and this article describes one very
simple (and admittedly limited) approach implemented recently at
the London Electronic Music Studios by the author. A dual PDP8
system was involved with specially built digitally controlled analog
signal generators.

The MUSYS program supplies the composer/programmer with a
text editor to prepare or modify his program/score, a compiler to
assemble the score into coded lists of command data, a
performance program to read the assembled lists and prepare it for
delivery to the sound generators, and the delivery program (the
conductor?) to actually issue the program commands to the sound-
generating devices in real time.

In order to describe a musical event, the composer/programmer
is required to specify in the program all the analog components
needed to generate the desired sonic effect, and to specify the
temporal coordinates to locate the event in time. All this is
essentially analagous to the informational content of a convention-
al graphic score, retranslated into a linear string of ASCIl symbols
as a command language entered through a teletype. As most
musical events require complex descriptions, MUSYS is wisely
provided with a macro-generator to relieve some of the program-
ming detail.

The paper gives a very practical notion of the system, and lists a
number of compositions by notable composers (Hans Werner

Henze and Harrison Birtwistle included) for which MUSYS was
successful. There is no discussion of the aesthetics involved,
which is admirable, but one is left to wonder about the problems of
musical style inherent in the limitations of one programming
language over another.

Reprinted by permission of Association for Computing
Machinery from Computing Reviews, June 1974, Copyright 1974.

CREATIVE COMPUTING

Creative Computing is a new non-profit magazine of educational
and recreational computing published by Ideametrics, P.O. Box
789-M, Morristown, New Jersey 07960. Subscriptions to this
“refreshingly informative” magazine are $8 per year (foreign $9.50).

David H. Ahl, editor-in-chief and publisher has a special art issue
planned for March-April 1976.

Why not contribute to this issue? Contributions should be 250 to
1500 words — or more if you have a lot to say! Typed, double-
spaced. Please consider the questions below in preparing your
article.

Get your material in EARLY. Absolute, final, last cut-off date is
October 15, 1975 but don't wait 'till then. Also, early material has a
much higher probability getting a good spot in the issue. DO IT
TODAY!

How/why did you become involved with the computer (in
producing art)?

What is your art background?

What role does the computer play for you . .
etc.? What is your role?

Are your computer works related to non-computer art?

Do you have a final image in mind when work begins?

Could your work be done without the aid of a computer? If yes,
why use the computer?

To what extent are you involved in the technical production of
your work, for example, in programming?

Do you feel art work created with a computer has now or will have
an impact on art as a whole in the future?

Do you intend to continue using the computer to create art
pieces?

Do you recommend the use of the computer for others in creating
works of are?

Along with your article, opinion, or other good words we would
like illustrations, graphics, and photos of your work. Reproduction
quality please (sharp B & W artwork, glossy B & W photos 5 x 7 or
larger, preferably 8 x 10).

READERS AND WRITERS!! Please submit additional questions
you'd like us to focus on.

Please send all material, artwork, responses questions, etc.
direct to the Creative Computing art issue guest editor:

Ruth Leavitt

5315 Dupont Ave. South
Minneapolis, MN 55419
(612) 825-9005

. simulation, tool,

AIMS AND MEMBERSHIP

The Society aims to encourage the creative use of computers in
the arts and allow the exchange of information in this area.
Membership is open to all at £2 or $6 per year, students half price.
Members receive PAGE eight times a year, and reduced prices for
the Society's public meetings and events. The Society has the
status of a specialist group of the British Computer Society, but
membership of the two societies is independent.

Libraries and institutions can subscribe to PAGE for £2 or $6 per
year. No other membership rights are conferred and there is no
form of membership for organizations or groups. Membership and
subscriptions run from January to December. On these matters and
for other infomration write to Alan Sutcliffe or Kurt Lauckner
(U.S.A)

COMPUTER ARTS SOCIETY ADDRESSES

Chairman: Alan Sutcliffe, 4 Binfield Road Workingham, Berkshire,
Eng.

Secretary: John Lansdown 50/61
WC1B4JX.

Dutch Branch (CASH): Leo Geurts and Lambert Meertens,
Mathematisch Centrum, Tweede Boerhaavestraat 49, Amster-
dam, Holland.

U.S. Branch (CASUS) Coordinator: Kurt Lauckner, Mathematics
Dept., Eastern Michigan University, Ypsilanti, Michigan, 48197
U.S.A.

This issue of PAGE was edited by Kurt Lauckner.

Russell Square, London

O.C.L.E.S.

William P. Uphoff

Recently | had the pleasure to attend a conference on computer
arts at Purdue University. It was a fitting time for my introduction to
the computer and computer artists since my own work has led me
to a point of economic and technical complexity that | feel unable
or unwilling to push beyond its present form. | have little desire to
become an electrical engineer, but desire to utilize control systems
which have in the past required their assistance. My best effort to
date, in collaboration with an engineer and without computer
assistance, is the O.C.L.E.S. (Observer Controlled Light Emission
System). The system utilizes high speed integrated circuit
switching logic to control five optical systems housed in a projec-
tion apparatus.

OCLES was an interdisciplinary project between art and engineer-
created by myself and Jack Thomas with assistance from Gene
Wiskerson and Fred Price. The project consisted of procurement of
money from the State of California, industry outside of the institu-
tion and personal monies. Mr. Thomas and | worked extensively
together in all phases of the project and coordinated the various
departments of California State University, Northridge, including
Art, Engineering, Psychology, Music, Physical Science and Educa-
tion. | designed all the optics, support systems and exterior display
shells, while Mr. Thomas invented all the electronic circuitry.

OCLES deals with programmed and random directional
sequences, environmental control, audience participation and
dematerialization of sculpture by shifting the emphasis from the
object to the experience. OCLES is a light projection system
operated by five people simultaneously, each person having 19
controls which govern one optical system. Altogether the five
participants have complete command over visual and audio output
of OCLES with 3.5 X 10® possible combinations. The light display
that OCLES emits enables a very precise pattern of color to be
established and changed in very small increments. The pattern can
be manipulated at fast or slow rates. It may be moved in the forward
direction, stopped, reversed and returned to its exact original
configuration. Recently OCLES was on display at the Cranbrook
Science Institute Planetarium, Bloomfield Hills, Michigan.

| believe that Art can and must exist on many levels. A device
such as OCLES, created to generate visually stimulating move-
ments of color and abstract images, can excite participants to a
purely ethereal experience. On a different, more intellectual level,
however, OCLES can create a situation whereby individual partici-
pants can learn basic cues about their own creativity. It is a
decision-making process which constitutes these cues; when dif-
ferent characteristics of the end-product are controlled by the
participant to get visual feedback loops established between the
total end-product and the other participants.

The computer appears to be a natural next step to facilitate
control over interactive works of art such as OCLES. The advantage
of such a device is that artists would not have to design and build
an electrical system each time they make a piece of art. The artist
would simply program the desired output via the computer. This
would allow the artist more time for aesthetic concerns instead of
technical ones.

My recent involvement in computer-assisted art demands the
same critical and serious attitude any other work of art would
demand. The same issue, that of making vital art, must be held in
tact while developing a meaningful dialog between the issue, tool,
and artist. To my disappointment, many computer artists appear to
forget the issue in favor of a fascination with the tool or what the
tool can do. Perhaps this is where the problem lies. The computer
does not make art, artists do. The artists who choose the computer
as their medium should learn more about their tool. An old
Japanese woodcarver, named Munakata, in a lecture, devoted over
an hour to his tools, denoting their importance as a means to the
language he used in carving. He was quick to note that only by
knowing one's tools could one be truly free to make art.

Many computer artists rely on programmers to delineate the
limitations within which they must work. Would it not be more
advantageous for artists to learn programming as an essential step
in the formulation of their art? It is pure nonsense for an artist to
say that he only wants to use the computer, but does not want to
understand it. Yet how many artists working in the medium hold
such an attitude? The new programs beginning at universities,
where the computer is used by artists for their work, can and must
address themselves to the importance of understanding the tool.
These programs must equally address themselves to aesthetic
issues so that the computer, in the future, will not be a fascination
for artists. New programs like ARSTECNICA at University of
Massachusetts, Amherst under Robert Mallory, have an excellent
opportunity to educate a new generation of computer artists, if a
playful attitude and a serious approach can be fostered by
instructors.

